Sains Malaysiana 54(3)(2025): 691-699

http://doi.org/10.17576/jsm-2025-5403-07

 

Hidrogel dengan Sifat Terbiodegradasi Terkawal Berasaskan Selulosa dengan Ekstrak Bawang Putih

(Hydrogel with Controlled Biodegradability Properties Based on Cellulose with Garlic Extract)

 

NURFARISAH DAMIA ZAMRUDDIN1, KUSHAIRI MOHD SALLEH1, SARANI ZAKARIA2,* & SIVAPREYAN PUNITHAN1

 

1Bahagian Teknologi Biosumber, Pusat Pengajian Teknologi Industri, Universiti Sains Malaysia, 11800 Gelugor, Pulau Pinang, Malaysia

2Jabatan Fizik Gunaan, Fakulti Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Received: 18 May 2024/Accepted: 16 December 2024

 

 

Abstrak

Kajian terhadap bahan alternatif seperti hidrogel berasaskan selulosa wujud akibat keperluan bahan lestari yang mendesak. Walau bagaimanapun, sifat mekanikal dan biodegradasi hidrogel selulosa yang lemah mendorong kepada keperluan bahan lain bagi mengatasi masalah ini. Oleh itu, kajian ini memfokuskan kepada perubahan sifat fizikal, peningkatan sifat kimia dan pemanjangan tempoh biodegradasi hidrogel selulosa dengan menggunakan epiklorohidrin (ECH) sebagai agen paut silang kimia dan ekstrak bawang putih sebagai bahan antibakteria. Didapati kepekatan paut silang pada 10% ECH memberikan nilai peratusan penyerapan air tertinggi sebanyak 656.05%, menjadikan 10% ECH sebagai peratusan optimum untuk digabungkan dengan ekstrak bawang putih. Pada 10% ekstrak bawang putih memberikan kesan perencatan biodegradasi yang terbaik dengan peratusan penurunan nilai berat yang terendah sebanyak 34.27% serta nilai penyerapan airnya yang tinggi, melebihi ~500%. Oleh itu, hidrogel berasaskan selulosa yang telah diubah suai boleh digunakan dalam aplikasi yang melibatkan penggunaan air dan penahan air untuk jangka masa yang panjang yang dalam kajian ini ia merujuk kepada berapa lama hidrogel boleh kekal bertahan di dalam tanah seperti untuk aplikasi pertanian.

Kata kunci: Antibakteria; biodegradasi terkawal; penyerapan air

 

Abstract

The study of cellulose-based hydrogels arises from the pressing need for sustainable materials. However, the weak mechanical and biodegradation properties of cellulose hydrogels necessitate the need of other materials to overcome this problem. Therefore, this study aims to enhance the mechanical properties extending the biodegradation period of cellulose hydrogels by using epichlorohydrin (ECH) as a chemical crosslinking agent and garlic extract as an antibacterial material. It was found that a 10% ECH crosslinking concentration provided highest percentage of water absorption which is 656.05%, making the 10% ECH the optimal percentage to combine with garlic extract. At 10%, garlic extract concentration had a greater inhibitory effect on biodegradation with a lowest weight percentage value of 34.27% and high water absorption value exceeding ~500%. Therefore, the modified cellulose-based hydrogels can be used in applications involving the water usage and water retention for long-term purposes which is that refers in this experiment to the how long the hydrogel can remain effective in the soil, such as for agricultural applications.

Keywords: Antibacterial; controlled biodegradation; water absorption

 

REFERENCES

Garnica-Palafox et al. (2014)

Nazari et al. (2014)

Sharifi et al. (2003)

Abd El-Sayed, E.S., El-Sakhawy, M. & El-Sakhawy, M.A.M. 2020. Non-wood fibers as raw material for pulp and paper industry. Nordic Pulp and Paper Research Journal 35(2): 215-230. https://doi.org/10.1515/npprj-2019-0064

Akalin, G.O. & Pulat, M. 2018a. Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials 2018: 9676949. https://doi.org/10.1155/2018/9676949

Akalin, G.O. & Pulat, M. 2018b. Preparation of sodium carboxymethly cellulose hydrogels for controlled release of copper micronutrient. Technology, Engineering & Mathematics (EPSTEM) (2): 25-34.

Alpaslan, D., Olak, T., Turan, A., Ersen Dudu, T. & Aktas, N. 2021. A garlic oil-based organo-hydrogel for use in pH-sensitive drug release. Chemical Papers 75: 5759-5772. https://doi.org/10.1007/s11696-021-01760-2

Armir, N.A.Z., Zulkifli, A., Gunaseelan, S., Palanivelu, S.D., Salleh, K.M., Othman, M.H.C., & Zakaria, S. 2021. Regenerated cellulose products for agricultural and their potential: A review. Polymers 13(20): 3586. https://doi.org/10.3390/polym13203586

Aunina, K., Ramata-Stunda, A., Kovrlija, I., Tracuma, E., Merijs-Meri, R., Nikolajeva, V. & Loca, D. 2023. Exploring the interplay of antimicrobial properties and cellular response in physically crosslinked hyaluronic acid/ε-polylysine hydrogels. Polymers 15(8): 1915. https://doi.org/10.3390/polym15081915

Bashir, S., Hina, M., Iqbal, J., Rajpar, A.H., Mujtaba, M.A., Alghamdi, N.A., Wageh, S., Ramesh, K. & Ramesh, S. 2020. Fundamental concepts of hydrogels: Synthesis, properties, and their applications. Polymers 12(11): 2702. https://doi.org/10.3390/polym12112702

Bhatwalkar, S.B., Mondal, R., Krishna, S.B.N., Adam, J.K., Govender, P. & Anupam, R. 2021. Antibacterial properties of organosulfur compounds of garlic (Allium sativum). Frontiers in Microbiology 12: 613077. https://doi.org/10.3389/fmicb.2021.613077

Borlinghaus, J., Albrecht, F., Gruhlke, M.C.H., Nwachukwu, I.D. & Slusarenko, A.J. 2014. Allicin: Chemistry and biological properties. Molecules 19(8): 12591. https://doi.org/10.3390/molecules190812591

Choo, S., Chin, V.K., Wong, E.H., Madhavan, P., Tay, S.T., Yong, P.V.C. & Chong, P.P. 2020. Review: Antimicrobial properties of allicin used alone or in combination with other medications. Folia Microbiologica (Praha) 65(3): 451-465. https://doi.org/10.1007/s12223-020-00786-5

El-Aziz, G.H.A., Ibrahim, A.S. & Fahmy, A.H. 2022. Using environmentally friendly hydrogels to alleviate the negative impact of drought on plant. Open Journal of Applied Sciences 12(01): 111-133. https://doi.org/10.4236/ojapps.2022.121009

Garnica-Palafox, I., Sánchez-Arévalo, F., Velasquillo, C., García-Carvajal, Z., García-López, J., Ortega-Sánchez, C., Ibarra, C., Luna-Bárcenas, G. & Solís-Arrieta, L. 2014. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. Journal of Biomaterials Science, Polymer Edition 25: 32-50.

Girish, V.M., Liang, H., Aguilan, J.T., Nosanchuk, J.D., Friedman, J.M. & Nacharaju, P. 2019. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 20: 102009. https://doi.org/10.1016/j.nano.2019.04.012

Hemmati, F., Jafari, S.M. & Taheri, R.A. 2019. Optimization of homogenization-sonication technique for the production of cellulose nanocrystals from cotton linter. International Journal of Biological Macromolecules 137: 374-381. https://doi.org/10.1016/j.ijbiomac.2019.06.241

Jiang, X.Y., Liang, J.Y., Jiang, S.Y., Zhao, P., Tao, F., Li, J., Li, X.X. & Zhao, D.S. 2022. Garlic polysaccharides: A review on their extraction, isolation, structural characteristics, and bioactivities. Carbohydrate Research 518: 108599. https://doi.org/10.1016/j.carres.2022.108599

Kalhapure, A., Kumar, R., Singh, V.P. & Pandey, D.S. 2016. Hydrogels: A boon for increasing agricultural productivity in water-stressed environment. Current Science 111(11): 1773-1779. https://doi.org/10.18520/cs/v111/i11/1773-1779

Kshirsagar, M., Dodamani, A., Karibasappa, G., Vishwakarma, P., Vathar, J., Sonawane, K., Jadhav, H. & Khobragade, V. 2018. Antibacterial activity of garlic extract on cariogenic bacteria: An in vitro study. AYU (An International Quarterly Journal of Research in Ayurveda) 39(3): 165-168. https://doi.org/10.4103/ayu.ayu_193_16

Liu, G., Li, W., Chen, L., Zhang, X., Niu, D., Chen, Y., Yuan, S., Bei, Y. & Zhu, Q. 2020. Molecular dynamics studies on the aggregating behaviors of cellulose molecules in NaOH/urea aqueous solution. Colloids and Surfaces A: Physicochemical and Engineering Aspects 594: 124663. https://doi.org/10.1016/j.colsurfa.2020.124663

Madineh, H., Yadollahi, F., Yadollahi, F., Pouria Mofrad, E. & Kabiri, M. 2017. Impact of garlic tablets on nosocomial infections in hospitalized patients in intensive care units. Electronic Physician 9(4): 4064-4071. https://doi.org/10.19082/4064

Mohd Salleh, K., Zakaria, S., Mostapha, M., Amran, U.A., Wan Nadhari, W.N.A. & Ibrahim, N.A. 2021. Keterlarutan selulosa, pelarut dan produk selulosa yang dijana semula: Suatu ulasan. Sains Malaysiana 50(10): 3107-3126. https://doi.org/10.17576/jsm-2021-5010-23

Nie, H., Liu, M., Zhan, F. & Guo, M. 2004. Factors on the preparation of carboxymethylcellulose hydrogel and its degradation behavior in soil. Carbohydrate Polymers 58(2): 185-189. https://doi.org/10.1016/j.carbpol.2004.06.035

Peppas, N.A. & Hoffman, A.S. 2020. 1.3.2E - Hydrogels. In Biomaterials Science (Fourth Edition), edited by Wagner, W.R., Sakiyama-Elbert, S.E., Zhang, G. & Yaszemski, M.J. Massachusetts: Academic Press. hlm. 153-166.

Reduwan Billah, S.M., Mondal, M.I.H., Somoal, S.H. & Nahid Pervez, M. 2018. Cellulose-based hydrogel for industrial applications, In Cellulose-Based Superabsorbent Hydrogels, edited by Mondal, M. Polymers and Polymeric Composites: A reference series, Cham, Springer. https://doi.org/10.1007/978-3-319-77830-3_63

Salleh, K.M., Armir, N.A.Z., Mazlan, N.S.N., Mostapha, M., Wang, C. & Zakaria, S. 2021. Hydrogel and aerogel-based composites: Biodegradable hydrogel and aerogel polymer blend-based composites. In Biodegradable Polymers, Blends and Composites, disunting oleh Rangappa, S.M., Parameswaranpillai, J., Siengchin, S. & Ramesh, M., Cambridge: Woodhead Publishing. hlm. 355-388. https://doi.org/10.1016/B978-0-12-823791-5.00019-3

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H., Jaafar, S.N.S. & Amran, U.A. 2018. Chemically crosslinked hydrogel and its driving force towards superabsorbent behaviour. International Journal of Biological Macromolecules 118(Part B): 1422-1430. https://doi.org/10.1016/j.ijbiomac.2018.06.159

Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty fruit bunch cellulose and sodium carboxymethylcellulose. International Journal of Biological Macromolecules 131: 50-59. https://doi.org/10.1016/j.ijbiomac.2019.03.028

Sharifi, A.M., Darabi, R. & Akbarloo, N. 2003. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. Journal of Ethnopharmacology 86(2-3): 219-224.

Shin, Y., Kim, D., Hu, Y., Kim, Y., Hong, I.K., Kim, M.S. & Jung, S. 2021. pH‐responsive succinoglycan‐carboxymethyl cellulose hydrogels with highly improved mechanical strength for controlled drug delivery systems. Polymers 13(18): 3197. https://doi.org/10.3390/polym13183197

Subroto, E., Cahyana, Y., Tensiska, M., Filianty, F., Lembong, E., Wulandari, E., Kurniati, D., Saputra, R.A. & Faturachman, F. 2021. Bioactive compounds in garlic (Allium sativum l.) as a source of antioxidants and its potential to improve the immune system: A review. Food Research 5(6): 1-11. https://doi.org/10.26656/FR.2017.5(6).042

Tavares, L., Santos, L. & Zapata Noreña, C.P. 2021. Bioactive compounds of garlic: A comprehensive review of encapsulation technologies, characterization of the encapsulated garlic compounds and their industrial applicability. Trends in Food Science and Technology 114: 232-244. https://doi.org/10.1016/j.tifs.2021.05.019

Winarti, C., Kurniati, M., Arif, A.B., Sasmitaloka, K.S. & Nurfadila. 2018. Cellulose-based nanohydrogel from corncob with chemical crosslinking methods. IOP Conference Series: Earth and Environmental Science 209: 012043. https://doi.org/10.1088/1755-1315/209/1/012043

Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S. & Li, X. 2023. Hydrogel-based dressings designed to facilitate wound healing. Materials Advances 5(4): 1364-1394. https://doi.org/10.1039/d3ma00682d

 

*Corresponding author; email: szakaria@ukm.edu.my

 

 

 

 

 

 

 

previous next