Sains Malaysiana 54(3)(2025): 691-699
http://doi.org/10.17576/jsm-2025-5403-07
Hidrogel dengan Sifat Terbiodegradasi Terkawal Berasaskan
Selulosa dengan Ekstrak Bawang Putih
(Hydrogel with Controlled Biodegradability Properties
Based on Cellulose with Garlic Extract)
NURFARISAH DAMIA ZAMRUDDIN1,
KUSHAIRI MOHD SALLEH1, SARANI ZAKARIA2,* & SIVAPREYAN
PUNITHAN1
1Bahagian Teknologi Biosumber, Pusat
Pengajian Teknologi Industri, Universiti Sains Malaysia, 11800 Gelugor, Pulau
Pinang, Malaysia
2Jabatan Fizik Gunaan, Fakulti
Sains dan Teknologi, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor,
Malaysia
Received: 18 May 2024/Accepted: 16 December 2024
Abstrak
Kajian terhadap bahan alternatif
seperti hidrogel berasaskan selulosa wujud akibat keperluan bahan lestari yang
mendesak. Walau bagaimanapun, sifat mekanikal dan biodegradasi hidrogel
selulosa yang lemah mendorong kepada keperluan bahan lain bagi mengatasi
masalah ini. Oleh itu, kajian ini memfokuskan kepada perubahan sifat fizikal,
peningkatan sifat kimia dan pemanjangan tempoh biodegradasi hidrogel selulosa
dengan menggunakan epiklorohidrin (ECH) sebagai agen paut silang kimia
dan ekstrak bawang putih sebagai bahan antibakteria. Didapati kepekatan paut
silang pada 10% ECH memberikan nilai peratusan penyerapan air tertinggi
sebanyak 656.05%, menjadikan 10% ECH sebagai peratusan optimum untuk
digabungkan dengan ekstrak bawang putih. Pada 10% ekstrak bawang putih memberikan
kesan perencatan biodegradasi yang terbaik dengan peratusan penurunan nilai
berat yang terendah sebanyak 34.27% serta nilai penyerapan airnya yang tinggi,
melebihi ~500%. Oleh itu, hidrogel berasaskan selulosa yang telah diubah suai
boleh digunakan dalam aplikasi yang melibatkan penggunaan air dan penahan air
untuk jangka masa yang panjang yang dalam kajian ini ia merujuk kepada berapa lama hidrogel boleh kekal bertahan di dalam tanah seperti untuk aplikasi pertanian.
Kata kunci: Antibakteria;
biodegradasi terkawal; penyerapan air
Abstract
The study of cellulose-based
hydrogels arises from the pressing need for sustainable materials. However, the
weak mechanical and biodegradation properties of cellulose hydrogels
necessitate the need of other materials to overcome this problem. Therefore,
this study aims to enhance the mechanical properties extending the
biodegradation period of cellulose hydrogels by using epichlorohydrin (ECH) as
a chemical crosslinking agent and garlic extract as an antibacterial material.
It was found that a 10% ECH crosslinking concentration provided highest
percentage of water absorption which is 656.05%, making the 10% ECH the optimal
percentage to combine with garlic extract. At 10%, garlic extract concentration
had a greater inhibitory effect on biodegradation with a lowest weight
percentage value of 34.27% and high water absorption value exceeding ~500%. Therefore,
the modified cellulose-based hydrogels can be used in applications involving the
water usage and water retention for long-term purposes which is that refers in
this experiment to the how long the hydrogel can remain effective in the soil,
such as for agricultural applications.
Keywords: Antibacterial; controlled
biodegradation; water absorption
REFERENCES
Garnica-Palafox et al. (2014)
Nazari et al. (2014)
Sharifi et al. (2003)
Abd El-Sayed, E.S., El-Sakhawy, M. & El-Sakhawy,
M.A.M. 2020. Non-wood fibers as raw material for pulp and paper industry. Nordic
Pulp and Paper Research Journal 35(2): 215-230. https://doi.org/10.1515/npprj-2019-0064
Akalin, G.O. & Pulat, M.
2018a. Preparation and characterization of nanoporous sodium carboxymethyl cellulose hydrogel beads. Journal of Nanomaterials 2018: 9676949. https://doi.org/10.1155/2018/9676949
Akalin, G.O. & Pulat, M.
2018b. Preparation of sodium carboxymethly cellulose
hydrogels for controlled release of copper micronutrient. Technology,
Engineering & Mathematics (EPSTEM) (2): 25-34.
Alpaslan, D., Olak, T., Turan, A., Ersen Dudu, T. & Aktas,
N. 2021. A garlic oil-based organo-hydrogel for use in pH-sensitive drug
release. Chemical Papers 75: 5759-5772. https://doi.org/10.1007/s11696-021-01760-2
Armir, N.A.Z., Zulkifli, A., Gunaseelan, S., Palanivelu, S.D., Salleh, K.M., Othman, M.H.C., &
Zakaria, S. 2021. Regenerated cellulose products for agricultural and their
potential: A review. Polymers 13(20): 3586. https://doi.org/10.3390/polym13203586
Aunina, K., Ramata-Stunda, A., Kovrlija, I., Tracuma, E., Merijs-Meri, R., Nikolajeva, V.
& Loca, D. 2023. Exploring the interplay of
antimicrobial properties and cellular response in physically crosslinked
hyaluronic acid/ε-polylysine hydrogels. Polymers 15(8): 1915. https://doi.org/10.3390/polym15081915
Bashir, S., Hina, M., Iqbal, J., Rajpar,
A.H., Mujtaba, M.A., Alghamdi, N.A., Wageh, S., Ramesh, K. & Ramesh, S.
2020. Fundamental concepts of hydrogels: Synthesis, properties, and their
applications. Polymers 12(11): 2702. https://doi.org/10.3390/polym12112702
Bhatwalkar, S.B., Mondal, R., Krishna, S.B.N., Adam, J.K., Govender,
P. & Anupam, R. 2021. Antibacterial properties of organosulfur compounds of
garlic (Allium sativum). Frontiers in Microbiology 12: 613077. https://doi.org/10.3389/fmicb.2021.613077
Borlinghaus, J., Albrecht, F., Gruhlke, M.C.H., Nwachukwu, I.D. & Slusarenko, A.J. 2014. Allicin: Chemistry and biological
properties. Molecules 19(8): 12591. https://doi.org/10.3390/molecules190812591
Choo, S., Chin, V.K., Wong, E.H., Madhavan, P., Tay, S.T.,
Yong, P.V.C. & Chong, P.P. 2020. Review: Antimicrobial properties of
allicin used alone or in combination with other medications. Folia Microbiologica (Praha) 65(3): 451-465. https://doi.org/10.1007/s12223-020-00786-5
El-Aziz, G.H.A., Ibrahim, A.S. & Fahmy, A.H. 2022. Using
environmentally friendly hydrogels to alleviate the negative impact of drought
on plant. Open Journal of Applied Sciences 12(01): 111-133. https://doi.org/10.4236/ojapps.2022.121009
Garnica-Palafox, I., Sánchez-Arévalo, F., Velasquillo, C., García-Carvajal, Z., García-López, J., Ortega-Sánchez, C., Ibarra, C., Luna-Bárcenas, G. & Solís-Arrieta, L. 2014. Mechanical and structural response of a hybrid hydrogel based on chitosan and poly(vinyl alcohol) cross-linked with epichlorohydrin for potential use in tissue engineering. Journal of Biomaterials Science, Polymer Edition 25: 32-50.
Girish, V.M., Liang, H., Aguilan,
J.T., Nosanchuk, J.D., Friedman, J.M. & Nacharaju, P. 2019. Anti-biofilm activity of garlic extract loaded nanoparticles. Nanomedicine:
Nanotechnology, Biology, and Medicine 20: 102009. https://doi.org/10.1016/j.nano.2019.04.012
Hemmati, F., Jafari, S.M. & Taheri, R.A. 2019.
Optimization of homogenization-sonication technique for the production of
cellulose nanocrystals from cotton linter. International Journal of
Biological Macromolecules 137: 374-381. https://doi.org/10.1016/j.ijbiomac.2019.06.241
Jiang, X.Y., Liang, J.Y., Jiang, S.Y., Zhao, P., Tao, F.,
Li, J., Li, X.X. & Zhao, D.S. 2022. Garlic polysaccharides: A review on
their extraction, isolation, structural characteristics, and bioactivities. Carbohydrate
Research 518: 108599. https://doi.org/10.1016/j.carres.2022.108599
Kalhapure, A., Kumar, R., Singh, V.P. & Pandey, D.S. 2016.
Hydrogels: A boon for increasing agricultural productivity in water-stressed
environment. Current Science 111(11): 1773-1779. https://doi.org/10.18520/cs/v111/i11/1773-1779
Kshirsagar, M., Dodamani, A., Karibasappa, G., Vishwakarma, P., Vathar,
J., Sonawane, K., Jadhav, H. & Khobragade, V. 2018. Antibacterial activity
of garlic extract on cariogenic bacteria: An in vitro study. AYU (An
International Quarterly Journal of Research in Ayurveda) 39(3): 165-168. https://doi.org/10.4103/ayu.ayu_193_16
Liu, G., Li, W., Chen, L., Zhang, X., Niu, D., Chen, Y.,
Yuan, S., Bei, Y. & Zhu, Q. 2020. Molecular dynamics studies on the
aggregating behaviors of cellulose molecules in NaOH/urea aqueous solution. Colloids
and Surfaces A: Physicochemical and Engineering Aspects 594: 124663. https://doi.org/10.1016/j.colsurfa.2020.124663
Madineh, H., Yadollahi, F., Yadollahi, F., Pouria Mofrad, E.
& Kabiri, M. 2017. Impact of garlic tablets on nosocomial infections in
hospitalized patients in intensive care units. Electronic Physician 9(4):
4064-4071. https://doi.org/10.19082/4064
Mohd Salleh, K., Zakaria, S., Mostapha, M., Amran, U.A., Wan Nadhari, W.N.A. & Ibrahim, N.A. 2021. Keterlarutan selulosa, pelarut dan produk selulosa yang dijana semula: Suatu ulasan. Sains Malaysiana 50(10): 3107-3126. https://doi.org/10.17576/jsm-2021-5010-23
Nie, H., Liu, M., Zhan, F. & Guo, M. 2004. Factors on
the preparation of carboxymethylcellulose hydrogel and its degradation behavior
in soil. Carbohydrate Polymers 58(2): 185-189. https://doi.org/10.1016/j.carbpol.2004.06.035
Peppas, N.A. & Hoffman, A.S. 2020. 1.3.2E - Hydrogels.
In Biomaterials Science (Fourth Edition), edited by Wagner, W.R.,
Sakiyama-Elbert, S.E., Zhang, G. & Yaszemski, M.J. Massachusetts: Academic
Press. hlm. 153-166.
Reduwan Billah, S.M., Mondal, M.I.H., Somoal,
S.H. & Nahid Pervez, M. 2018. Cellulose-based hydrogel for industrial
applications, In Cellulose-Based Superabsorbent Hydrogels, edited by
Mondal, M. Polymers and Polymeric Composites: A reference series, Cham,
Springer. https://doi.org/10.1007/978-3-319-77830-3_63
Salleh, K.M., Armir, N.A.Z., Mazlan, N.S.N., Mostapha, M.,
Wang, C. & Zakaria, S. 2021. Hydrogel and aerogel-based composites:
Biodegradable hydrogel and aerogel polymer blend-based composites. In Biodegradable
Polymers, Blends and Composites, disunting oleh Rangappa, S.M., Parameswaranpillai,
J., Siengchin, S. & Ramesh, M., Cambridge:
Woodhead Publishing. hlm. 355-388. https://doi.org/10.1016/B978-0-12-823791-5.00019-3
Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S., Chia, C.H.,
Jaafar, S.N.S. & Amran, U.A. 2018. Chemically crosslinked hydrogel and its
driving force towards superabsorbent behaviour. International
Journal of Biological Macromolecules 118(Part B): 1422-1430. https://doi.org/10.1016/j.ijbiomac.2018.06.159
Salleh, K.M., Zakaria, S., Sajab, M.S., Gan, S. & Kaco, H. 2019. Superabsorbent hydrogel from oil palm empty
fruit bunch cellulose and sodium carboxymethylcellulose. International
Journal of Biological Macromolecules 131: 50-59. https://doi.org/10.1016/j.ijbiomac.2019.03.028
Sharifi, A.M., Darabi, R. & Akbarloo, N. 2003. Investigation of antihypertensive mechanism of garlic in 2K1C hypertensive rat. Journal of Ethnopharmacology 86(2-3): 219-224.
Shin, Y., Kim, D., Hu, Y., Kim, Y., Hong, I.K., Kim, M.S.
& Jung, S. 2021. pH‐responsive succinoglycan‐carboxymethyl
cellulose hydrogels with highly improved mechanical strength for controlled
drug delivery systems. Polymers 13(18): 3197. https://doi.org/10.3390/polym13183197
Subroto, E., Cahyana, Y., Tensiska, M., Filianty, F., Lembong, E., Wulandari, E., Kurniati,
D., Saputra, R.A. & Faturachman, F. 2021.
Bioactive compounds in garlic (Allium sativum l.) as a source of
antioxidants and its potential to improve the immune system: A review. Food
Research 5(6): 1-11. https://doi.org/10.26656/FR.2017.5(6).042
Tavares, L., Santos, L. & Zapata Noreña, C.P. 2021.
Bioactive compounds of garlic: A comprehensive review of encapsulation
technologies, characterization of the encapsulated garlic compounds and their
industrial applicability. Trends in Food Science and Technology 114:
232-244. https://doi.org/10.1016/j.tifs.2021.05.019
Winarti, C., Kurniati, M., Arif, A.B., Sasmitaloka, K.S. & Nurfadila.
2018. Cellulose-based nanohydrogel from corncob with chemical crosslinking
methods. IOP Conference Series: Earth and Environmental Science 209:
012043. https://doi.org/10.1088/1755-1315/209/1/012043
Zhang, W., Liu, L., Cheng, H., Zhu, J., Li, X., Ye, S. &
Li, X. 2023. Hydrogel-based dressings designed to facilitate wound healing. Materials
Advances 5(4): 1364-1394. https://doi.org/10.1039/d3ma00682d
*Corresponding author; email: szakaria@ukm.edu.my
|